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Summary 

In the present paper a perturbation method is developed in order to study viscous laminar flows through 
wavy-walled channels. The stream function of the flow is expanded in a series thereby the wall amplitude being 
the perturbation parameter. The walls of the channel are transformed into parallel straight lines in order to 
simplify the boundary conditions of the problem on the wall. Flow field and wall-shear stresses are calculated 
numerically up to the first perturbation order. 

The position of the beginning separation on the channel walls and the associated critical Reynolds number 
are determined, as well as the extension of the region of the separated flow. The position of separation and 
reattachment points are given as functions of Reynolds numbers lying above the critical Reynolds number. The 
results are discussed and compared with the experimental results of other papers and further theoretical analysis. 

I .  I n t r o d u c t i o n  

Viscous flow past wavy boundaries has attracted considerable interest in the last years 
because of the important role which it plays in several phenomena: the generation of wind 
waves on water, the formation of sedimentary ripples in river channels and dunes in 
deserts, the stability of a liquid film in contact with a gas stream, the rippling Of melting 
surfaces, the transpiration cooling of re-entry vehicles and rocket boosters, cross hatching 
on ablative surfaces and film vaporization in combustion chambers. Physiologists and 
technicians are interested in it trying to explain blood and urinary flow and to apply the 
results in order to optimize artificial organs. The laminar flow in channels and pipes 
confined by wavy walls has nevertheless not been studied extensively. 

Viscous flow in sinusoidally varying channels and pipes - peristaltic motions included 
- was treated by Burnes and Parkes [2] under the assumption that the Reynolds number is 
small enough for the Stokes approximation to be valid (inertial forces negligible in 
comparison with viscous forces). They got a solution by expressing the stream function as 
a Fourier cosine series determining the coefficients by assuming small values of the 
amplitude. The subsequent approximation in their analysis satisfying the boundary no-slip 
condition at the walls was replaced by Tsangaris and Leiter [16] by expressing the stream 
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function as a Fourier series not in the physical plane but in a transformed plane where the 
wavy boundary is transformed into a straight one. The proposed analytical perturbation 
method for creeping flow through small-amplitude sinusoidal channels is extended to 
laminar flow with Reynolds numbers far above that for creeping flow in this paper. Steady 
and unsteady flow through furrowed channels has been studied numerically by Sobey [10]. 
He especially concentrated on the Reynolds-number effect, also for separated flow. The 
underlying concept of multistructured boundary layers as developed by Stewartson 
[12,13,14] yields a relation between the geometric parameters and Reynolds number for 
which separation occurs. Stephanoff, Sobey and Bellhouse [11] compared the results of 
Sobey's calculations with experiments observed by visualization techniques. (Final discus- 
sion in this paper refers to these two papers.) Fluid flow connected with heat transfer in 
wavy channels was calculated by Vajravelu [17] by a perturbation method for long-wave 
channels and by solving the obtained linear differential equations numerically. Forrester 
and Young [5] and Young and Tsai [18] theoretically and experimentally worked out the 
flow patterns in a (axisymmetric) stenosis determining also the Reynolds-number effect on 
the flow separation. Talukder et al. [15] studied the pressure losses in multiple stenoses 
and the associated flow patterns for the stream lines and the separating zones. (Discussion 
refers to these papers by Forrester, Young, Tsai and Talukder et al.) 

The viscous flow of a liquid in a circular pipe whose radius has a slight sinusoidal 
variation was treated by Belinfante [1]. He calculated solutions numerically by power 
series. Manton [8] worked out the steady laminar flow for low Reynolds numbers in 
slowly-varying axisymmetric tubes of arbitrary radius variation. That means for sinusoid- 
ally varying tubes a long-wave approximation. His analytical perturbation solution yields 
some important result concerning the variation of the shear stresses and the flow 
separation. Some interesting experimental insight in the variation of the pressure and 
shear stresses along a wavy pipe for turbulent non-separated flow was given by Hsu and 
Kennedy [7]. A numerical treatment of the steady laminar separated flow in pipes with 
sinusoidal wall variation is presented in the paper of Chow and Soda [4]. The unsteady 
oscillatory viscous flow in pipes and channels of slowly-varying cross section has been 
calculated by Rao and Devanathan [9], by Hall [6] and by Cheng, Clark and Peng [3]. 

2. Formulation of the problem 

Steady laminar flow of an incompressible Newtonian fluid in a symmetrically furrowed 
channel in terms of the stream function xI" is governed by the equation derived from the 
vorticity equation 

Off" 3A~' O'Jl' 3A¢I' 
8y' 8x' 3x' 8y' 

- -  = , a a , ' ,  (1)  

where 

8 2 0 2 
A= V 2- - - + - -  

8X '2 Oy '2 

and v is the kinematic viscosity of the fluid. The symbols x', y '  denote respectively the 
coordinates along and normal to the axis of the channel (see Fig. 1). The velocity 
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Figure 1. Geometry of a symmetric furrowed channel. 
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components along the x'- and y'-axis are respectively: 

3't" Oq" 
,,' = , v' . (2) 

3y' Ox' 

The boundary condition is the no-slip condition on the wall; symmetry with respect to x' 
- axis is to be added: 

u'=~, , ' , , (z' ,  _ + h ( x ' ) ) = O ,  ~ ' = - ¢ ' , ( x ' ,  + h ( ~ ' ) ) = O ,  (3) 

u'(x' ,  y') = u'Cx', - y ' ) ,  v '(x' ,  y') = - v'(x' ,  - y ' ) ,  (4) 

whereby the boundaries of the symmetric channel are given by 

y ' =  +h(x ' ) .  (5) 

The shear stress at the wall boundary is (~t dynamic viscosity) 

• Ll+h rl / +  12hx hx 0y' 

We introduce nondimensional variables 

x' y-- ,I,' 
x = ~--, Y= b '  ~ = U--b ' (7) 

where b is the characteristic length according to Fig. 1 and U is the characteristic velocity 
along the x'-coordinate. Equation (1) then becomes 

0q' 0A,I, 0't' 0A,t, ) 04'I' + 2 04't' + 04't' (8) 
Re Oy Ox Ox Oy = Ox ----d" Ox20y 2 Oy 4" 

Re is the Reynolds number of the flow given by 

R e  = Ub/1,, ( 9 )  
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where b is the channel half-gap. The nondimensional shear stress 

b 
¢ = ~ ' - -  (10) 

Up,, 

then takes the nondimensional form 

[ 1 - h 2 . 4hx 2 ~lxy ]. (11) 
'T ~- [ I " ~ T x  (XttyY -- X~XX ) -- 1..]_ h x 

In order to satisfy the boundary conditions on the wall we transform the independent 
variables x and y into *1, ~" by 

Y (12) 

Then the channel is transformed to a channel confined by parallel walls as shown in Fig. 
2, 

~" = + 1. (13) 

The equation (8) then transforms into 

 ¢aa,i, 1 - -  Re g 3~ 3,/ 37/ ~ - ] = A A g ' ,  (14) 

where A is the A-operator transformed in ~/, ~'-variables, 

3 2 1 3 2 h,I 3 2 1 (2h2_hh, ln  3 A -  + (hZ.~'2 + 1) -2~' - - +  (15) 

The boundary condition on the wall turns out to be: 

~I'~=0, q'~=0 on ~'= +1. (16) 

The condition of the symmetric flow leads to 

q'(*h --~) = - ~ ( n ,  - ~ )  (17) 

~=+I ,f////L~/////////.'///////// 
y=- hlx} n 

"I- 
~=-I 

Figure 2. Transformation T from physical x, y plane to ~, ~ (parallel walls) plane. 



and the shear stress at the wall can be written in ~/, t-variables as 

0- = 't,;~h-~-(1 +~-~) - 't,~, 1 - h~ - 2q',~-~- + ' I , t +  h2 ' --~--- 2 1 + h• " 
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(18) 

3. Method of solution 

We use the method of small perturbations to obtain analytical solutions of the problem 
for weakly-furrowed channels with boundary shape 

h (~)  = 1 + of(*/). (19) 

The solution of the governing equation is expanded in series in terms of the geometric 
parameter ¢, and the asymptotic solution of ,It is sought in the limit of c -)  0" 

= ~0 + c ~  + ... (20) 

By substitution of Eqn. (20) into Eqn. (14) and subsequent collection of terms with equal 
powers of c, we get the following set of perturbation equations up to first-order results: 
zeroth order: 

~o~ttr = 0, (21a) 

~o~.(+ 1) = O, % , ( + 1 ) = 0 ,  (21b) 

first order: 

¢ 1 . . . .  + 2¢1,, r + + 12 f., - f ( 1  - = 

¢~.(_+ 1) = O, Xltl,(_+ 1) = 0. (22b) 

From Eqns. (21a) and (21b) we obtain for the zeroth order the well-known Poiseuille-solu- 
tion, not in the physical but in the transformed 7/, ~'-plane: 

~3 (23) 
q,o=~'-  3 . 

This result has been noticed by many authors (see Manton [8]). In order to find analytical 
solutions for the first-order equation we continue our analysis for sinusoidal walls: 

f(*/)  = - (cos */+ 1). (24) 
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Substituting 

91(~', 7/) = [ g~'(~') - ~'(1 - ~.2)] cos ~ + g2(~') sin ~/= gl(~) cos */+ gz(~') sin */(25) 

and applying the method of separation of variables, a system of ordinary differential 
equations for the functions g~(f) and g2(f) is obtained: 

g~¢¢¢¢ - 2g~'¢¢ + gr = Re[ (1 - ~.2 )( g2~¢- g2) + 2g2], (26a) 

_ 2 * - 2gr] .  (26b) g2~-2g2~+g2=-Re[( 1 ~ )(gl~ g*)+ 

The boundary condition equations (22b) lead to 

• + = = ( 2 7 )  gr (_+a)=0 ,  g a ~ ( _ l ) = - 2 ,  g2(_+l) 0, g2~(_+1) 0. 

The system of Eqns. (26a) and (26b) will be solved numerically in order to determine the 
functions g~'(~) and g2(~)- 

4.  S o l u t i o n  a n d  r e s u l t s  

The system of Eqns. (26a) and (26b) subject to the boundary conditions (27) is a linear 
system of differential equations with two unknown functions and with variable coeffi- 
cients. The boundary conditions are prescribed at both boundaries, ~ -- + 1 and ~ = - 1 ,  
as function values and the values of its first-order derivatives. The above system is solved 
numerically using a finite-difference method. A regular mesh of equidistant points is used. 
The resulting system of linear equations is solved iteratively by block relaxation using a 
tridiagonal solver routine. 

In Fig. 3 we see the numerical results of the functions g~(~) and g2(~) for Re = 1.0 and 
Re = 10. In the same figure are shown also the analytical results, 

2 
g t (~)  cosh 1 sinh 1 - 1 (sinh ~ cosh 1 - ~ cosh ~ sinh 1), (28a) 

g 2 ( ~ ) = 0  (28b) 

obtained by Tsangaris and Leiter [16] for the case of creeping flow at Re = 0. The curves 
for Re = 0 fit with an excellent accuracy to those for Re = 1.0. The same good agreement 
is valid also for the second derivatives of the functions g~'~(_+ 1) and g2~'(- 1) at the 
boundaries, which are dominant for the determination of the shear stress at the wall. It is 
for instance: g~¢( + 1)= -6.791, gEm's'( + 1)= 0 for Re = 0 (analytical perturbation theory) 
and g~'~(+ 1)= -6.791, g2¢¢( + 1)= 0.015 for Re = 0.1 (numerical solution). The second 
derivatives of the functions g~ and g2 at the wall boundary ~ = + 1 are plotted in Fig. 4 as 
functions of the Reynolds number, Re. 

In Figs. 5 to 9 the velocity profiles u and v in a channel with sinusoidal walls are shown, 
= 0.2, at Reynolds numbers Re = 1.0, 10, 75, 200, 400. The velocity profiles are plotted 

at cross sections of the channel x = 0, 1, 2, 3, 4, 5 and 6. 
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0.5 ~ 1 

0.5- Re=l 

Q5 £ 1. 

0. I Re:I___Q0 

o 
0.5 ~ 1. 

Figure 3. Analyt ical calculations of functions g{' and g2 for Re = 0, []6], and numerical calculations for ke = ] 
a n d  R e  = 10. 

For small Reynolds numbers, for instance Re = 1, Re = 10, the viscous effects dominate 
the inertial ones. For larger Reynolds numbers, e.g. Re = 75, an influence of the velocity 
profile from the fluid inertia is evident. In the diverging part of the channel the u-profiles 
are flattened at the centerline. The flow becomes more asymmetric in symmetrically-lying 
cross sections of the converging and the diverging parts of the channel, regarding the 
distribution of u- and v-components of the velocity. The negative sign of the v-component 
for x = 0 and the positive sign of the same component  for x = ~r give a clear demonstra- 
tion of the effect of inertia. 

For Re = 200 the flow separation is just in way. The u-velocity profile approaches 
tangentially to y-planes near the wall and back flow in some cross sections of the channel 
is registrated. 

For Re = 400 a separation bubble is recognized, as the back flow becomes stronger and 
also more extensive. The separation region extends now mainly in the diverging part  but 
also in the converging part of the channel. 

Figure 10 shows the velocity field in the domain of the bubble vortex for Re = 400 and 
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g~(+ ) 

- 1 0  _~- 

- -  5 -  

0 Re 

i;o 4'oo 5;0 
Figure 4. Variation of the second derivatives of the functions g~' and g2 at the wall of the channel as functions of 
Reynolds number. 

for a sinusoidal channel with c = 0.3. The center of the bubble vortex, that is the point 
where the velocity vanishes, can be determined. This is demonstrated in Fig. 11. In the 
same figure some stream lines of  the velocity field are drawn. The closed stream lines have 

J ! 

I-~]=l. 

0 1, 2. 3 .~  4. 5. 6 2'~, 

Figure 5. Longitudinal u and transversal v velocity profiles at various cross sections of the channel for a channel 
with c = 0.2 and Re = 1.0. 
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0 1 2. 3 ~  /-. 5. 6 2:x 

Figure 6. Longitudinal u and transversal o velocity profiles at various cross sections of the channel with ~ = 0.2 

and Re = 10.0. 

' iu,] = 1. '~ 

= . 

× 

0 1. 2. 3. x 4. 5. 6 2:~ 

Figure 7. Longitudinal u and transversal o velocity profiles at various cross sections of a channel with E = 0.2 and 

Re = 75. 

sP R~, [,,]=~ 

0 1. 2 3.~ 4. 5 6 2"x 

Figure 8. Longitudinal u and transversal o velocity profiles at various cross sections of a channel with c = 0.2 and 
Re = 200. 

a n  a b s o l u t e  v a l u e  o f  t h e  s t r e a m  f u n c t i o n  ~I" l a r g e r  t h a n  0 . 6 6 6 6  . . . .  w h i c h  is  t h e  v a l u e  o f  t h e  

s t r e a m  f u n c t i o n  o f  t h e  s o l i d  w a v y  b o u n d a r y .  T h e  i n t e r n a l  b o u n d a r y  o f  t h e  b u b b l e  v o r t e x  is  

l i m i t e d  b y  t h e  s e c o n d  a r c  o f  t h e  s a m e  s t r e a m l i n e  ~I' = 0 . 6 6 6 6  . . . .  
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O' 1. 2 3 ~ 4. 5 6 2~ 

Figure  9. Longi tud ina l  u and  t ransversal  o veloci ty  profi les  a t  var ious  cross sections of a channe l  wi th  ¢ = 0.2 and 

Re  = 400. 

RP 

• -, , -  "[ - r - - -  - , 

2 3 

Figure  10. Veloci ty vector  field close to and  in the region of the separa t ion  bubb le  for a channel  wi th  ~ = 0.3 and  

Re  = 400. 

060 

2 3 rc 

Figure  l l .  S t ream l ines  close to and  in the region of the separa t ion  bubb le  for a channe l  wi th  t = 0.3 and 

Re  = 400. 
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The shear stress is reduced to the following formula for the upper wall ~ = + 1: 

(1 - ~ 2  sin2*/) 2 

[1 - ~(cos*/+ 1)1=(1 + c  2 sin2~/) 

× ( - 2  + , { [ g ~ ( + 1 ) + 6 1  cos* /+g2 ;~(+1)  sin,/} }. (29) 

The term - 2  within the brackets in the above equation of the shear stress is the 
well-known Poiseuille-term-slope in */, ~'-plane. The remaining term between the brackets 
is a term varying with Reynolds number. It increases by increasing the Reynolds number. 
Figure 12 shows skin friction ~" against 7/= x for three different values of the Reynolds 
number. The amplitude of the channel wall is 2c = 0.4. The variation of the shear stress is 
a periodic function of x having a phase difference with the variation of the wall shape. Its 
maximum value is lying upstream of the maximum channel cross section. The amplitude 
of the shear stress variation at the wall increases with increasing Reynolds numbers. For 
Re = 25 the shear-stress variation is always negative, the flow is not yet separated. At 
Re = 185 separation begins on a point lying upstream of the largest width of the channel. 
For Re = 300 > 185 a separation region (r  > 0) on the channel wall exists. By increasing 
the Reynolds number the separation point moves upstream and the reattachment point 
downstream, that means the separation region is growing with Reynolds number. 

Re = 300 

5. ,2~ 
i o x°~i 

I 

I 

-2. -----4 

-5" i 

-10- 

I 

I 
I 

' I 

2£= 0.¢ ~ '  ~ l  
I I 

I . _ _  i J -  

Figu re  12. Shear -s t ress  d i s t r i bu t ion  for  ~ = 0.2 a t  the  u p p e r  wall  y = h ( x ) ,  ~" = + 1, o f  the  channe l .  
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Assuming that the higher-order terms may be neglected, Eqn. (29) becomes for flow 
separation (~- = 0): 

O= - 2  +e  { [g,*~¢(+ 1)+6]  cos ~/+ g2rr( + 1)sin 7/) (30) 

o r  

cos */A + sin ~B = C, 

where 

A = g i n ( + 1 )  +6 ;  

(31) 

This trigonometric equation has the real solution 

B ___ ~ B  2 + A 2 - C 2 

tan - A + C ' (33) 

if 

A 2 + B 2 >i C 2. (34) 

The equality A 2 + B 2 = C 2 yields the critical Reynolds number as a function of c, i.e. that 
value of Reynolds number when separation appears" 

R ~ r i t = ~ ( , ) ,  ( 3 5 )  

and the relation 

B 
*/0~n, = arctan~- + ~r, (36) 

the position of the separation for Recrir The two points 

B - CB 2 + A 2 - -  C 2 
T/ose p = 2 arctan .4 + C + ~r, 

B + v/B 2 + A 2 - C 2 
*/0rc,t = 2 arctan A + C + ¢r 

are respectively the separation and reattachment points for 

Re > Rec,it. (38) 

Figure 13 shows how the critical Reynolds number, Eqn. (35), depends on ~. Recrit 
decreases very rapidly as e increases. 

Figure 14 illustrates the position of separation and reattachment points, Eqn. (37)., for 
some values of the amplitude parameter of the wavy channel wall. 

(37) 

2 
B = g2~(+1) ;  C = - .  (32) 

( 
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Figure 13. Variation of critical Reynolds number Recrit with amplitude parameter c 

500 

Re 

600- 

~=0.3 

300- 

Recrif =185 200- 

Recrif=80 100. 
I I 
I I  
II  In ~ 2~ 

_ I . . . . . .  J . . . , .  
2e I - "-" . . . . .  

Figure 14. Position of the separation- and reattachment-points for channels: critical Reynolds numbers at the 
separation point and extension of the separated flow (separation and reattachment) along the wall at Reynolds 
numbers above critical Reynolds numbers for two different values of amplitude parameter c. 

5. D i s c u s s i o n  

The compar ison of the theoretical analysis of Forrester and  Young [5] with subsequent  
experiments  by the same authors (Fig. 5, p. 311) as well as the experiments by Young  and  
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Tsai [18] (Fig. 7, p. 401) for the flow in a stenosis (converging-diverging tube) shows that 
the separation point for critical Reynolds number according to the theoretical curve (like 
that in Fig. 14) is far upstream in direction to the minimum of the tube cross section while 
the separation point according to experiments is nearly at the end of the stenosis. So, in 
the case of a separation zone (Re > Recrit), this is also shifted downstream. The corre- 
sponding situation seems to occur with the furrowed channel, theoretically analysed by 
Sobey [10] and experimentally by Stephanoff, Sobey and Bellhouse [11]. 

The present results show that the separation point for critical Reynolds number lies 
slightly upstream the maximum width of the wavy wall of the channel (Fig. 14), and the 
separation regions for Re > Recrit are shifted downstream. Though the wall amplitude of 
the experiments by Stephanoff, Sobey and Bellhouse [11] is much larger, the flow features 
given in that paper seem to correspond at least partly with the present results. The flow in 
multiple stenoses as observed by Talukder et al. [15] demonstrates this effect for tubes too. 

Equation (35) yields for higher Reynolds numbers a simple relation between wavy-wall 
amplitude c and critical Reynolds number for separation: 

Reclr/i2c --- 2.75. 

From Sobey's analysis [10] together with our assumptions for the wavy wall it turns out to 
be: 

1/3 4 Recrit c = 0 .8  . 

The differences of the power 1/2  respectively 1/3 may contribute to the ongoing 
discussion of the generalization of Stewartson's [12], [13], [14] and Lighthill's concept of 
multistructured boundary layers as already pointed out by Stewartson [13] concerning 
scaling factors c3L or ¢4L. 
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